Search results

Search for "live-cell imaging" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • ) of poly(lactic-co-glycolic acid) (PLGA) [7], polycaprolactone [8], and chitosan [9]. Furthermore, fluorescent ONPs are a promising way to facilitate the localization of NPs in cells through fluorescence imaging. They can also be used for fluorescent labelling of cells, especially for live cell
  • imaging, provided that the ONPs are harmless for cells. This has been developed for eukaryotic cells [10], but the use of ONPs for labelling bacterial cells is still rare and not described in literature for alive bacterial cells. The main limitation is probably the frequent cytotoxic effect of ONPs on
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • were employed as probes for detecting metal ions and in live-cell imaging, and they had a high quantum yield of 61% [126]. Chen et al. proposed a quick method for producing highly luminous CDs by hydrothermally treating lignin with H2O2. It is well recognized that under the photoassisted catalysis of
PDF
Album
Review
Published 05 Oct 2022

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • learning and linear programming (an optimization method) for tracking single cells in live-cell imaging of both fluorescent and bright-field images of the cell cytoplasm [112]. Newby et al. developed a CNN for fully automated submicrometer-scale localization of particles such as viruses, proteins, and drug
PDF
Album
Review
Published 13 Aug 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • ruffles moving beneath the pipette opening. Slightly higher rms amplitudes may also be due to different temperature because fixed cells are measured at room temperature, while live-cell imaging is carried out at 37 °C. Frequency response behavior Owing to the fact that morphological changes at the cell
PDF
Album
Full Research Paper
Published 12 Mar 2021

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • rapid detection and the development of new immunoassays. Imaging and labeling mammalian cell lines Beyond their antibacterial effect and pathogen sensing, the surface functionalities of NCs allow for selective labeling for the detection of biomolecules, intracellular metal ion sensing, live-cell imaging
PDF
Album
Review
Published 30 Mar 2020

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • with water instead of serum (PLGA NPs). We then added the NPs as well as the free dye Lumogen® Red to the cells and monitored the cell interaction under serum-free conditions over a time period of 24 h by live-cell imaging (Figure 7). The results revealed that the interaction between the unformulated
  • after reaching 80–90% confluence or were used for cell culture experiments. Determination of nanoparticle–cell interaction by live-cell imaging In order to investigate the interaction between PLGA NPs displaying a protein corona of different characteristics and HepG2 cells an IncuCyte®S3 Live-Cell
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores

  • Kartheek Katta,
  • Dmitry Busko,
  • Yuri Avlasevich,
  • Katharina Landfester,
  • Stanislav Baluschev and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2019, 10, 522–530, doi:10.3762/bjnano.10.53

Graphical Abstract
  • scattering than visible light, causes less photodamage, and can penetrate deeper into tissues. Hence, it is preferred for life-science applications. Organic dyes that can be excited above 600 nm are highly favorable for live-cell imaging experiments, because the background signal obtained from the
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

  • Dimitri Vanhecke,
  • Dagmar A. Kuhn,
  • Dorleta Jimenez de Aberasturi,
  • Sandor Balog,
  • Ana Milosevic,
  • Dominic Urban,
  • Diana Peckys,
  • Niels de Jonge,
  • Wolfgang J. Parak,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2017, 8, 2396–2409, doi:10.3762/bjnano.8.239

Graphical Abstract
  • negative, must be considered for nanotechnology and nanomedicine in particular to develop to its full potential. Keywords: co-exposure; endocytosis; live cell imaging; nanoparticles; quantitative microscopy; Introduction Over the past two decades, improvements in nanomaterial research were followed by a
  • . Uptake occurs in a “first come, first served” manner, as suggested by the uptake slopes seen in the live-cell imaging and supported by the ICP data. Also the TEM data did not find evidence for particle-specific sorting before the uptake. A distinct type of organelles, namely caveosomes [36], has been
  • × phosphate-buffered saline (PBS). After 1 h of staining (in the dark at RT) and three washing cycles with 1× PBS the cells were mounted using Glycergel mounting media (C0563, Dako, Baar, Switzerland). For live-cell imaging, cells were seeded in a Lab-TekTM II chambered cover glass four-well chamber (1.5
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2017

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Antonín Brož,
  • Lucie Bačáková,
  • Pavla Štenclová,
  • Alexander Kromka and
  • Štěpán Potocký

Beilstein J. Nanotechnol. 2017, 8, 1649–1657, doi:10.3762/bjnano.8.165

Graphical Abstract
  • phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the
  • types. Keywords: cell viability; FTIR; live-cell imaging; MTS; nanodiamond; SAOS-2 cells; Introduction Carbon-based materials in the form of nanostructures are showing great promise as engineering and biomedical materials [1]. Moreover, diamond represents a new class of material with properties that
  • viability and are negatively correlated with the material cytotoxicity. The live-cell imaging method was used for observing the intake of NDs into the cells. The results were evaluated on the basis of particle size, surface potential, surface functional groups, and the concentration of the ND suspension
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • the number of incorporated dye molecules can be controlled by the amount of the modified dye and by growing non-fluorescent or fluorescent shells. Brightness and quantum yields Sensitive imaging applications, such as live-cell imaging, three-dimensional imaging or STED microscopy, require a high
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • indicator for a necrosis-based cell death. Moreover, the live cell imaging with the detection of a burst event and the Hoechst staining of the cell nucleus points into the direction of necrosis. Despite of this common conclusion, we analyzed the cleavage of Caspase-3 showing no specific activation of major
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • ][18] and magnetic field enhancement [19]. In these various disciplines, the rise of a trend targeting high performance spectroscopy techniques for biomolecules and cells can be recognized. Raman spectroscopy has already been implemented for whole live cell imaging [20] as well as its biological
PDF
Album
Full Research Paper
Published 18 Feb 2015

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed
  • . Live cell imaging was performed over the course of an incubation time of three days using optical dark field microscopy in order to evaluate the cell adhesion and spreading by the cell morphology. We observe an influence of the particle coating on the growth behavior with respect to the cytotoxic
  • obtained from gel electrophoresis for PEG particles can be found in the Supporting Information of [20]. Live cell imaging In order to investigate how single MDCK II cells adhere and grow on nanoparticle-decorated substrates, live cell imaging using optical dark field microscopy was performed. For
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

  • Li Shang,
  • Karin Nienhaus,
  • Xiue Jiang,
  • Linxiao Yang,
  • Katharina Landfester,
  • Volker Mailänder,
  • Thomas Simmet and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2388–2397, doi:10.3762/bjnano.5.248

Graphical Abstract
  • ; cationic and NPS, 7.5 µg/mL). AuNCs were suspended in serum-free DMEM at 20 µg/mL. Live cell imaging was performed for up to 2 h with our spinning disk laser scanning confocal microscopy systems [29][31]. Images were acquired in two separate color channels. NP emission was collected through a bandpass
PDF
Album
Full Research Paper
Published 11 Dec 2014

Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

  • Dagmar A. Kuhn,
  • Dimitri Vanhecke,
  • Benjamin Michen,
  • Fabian Blank,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1625–1636, doi:10.3762/bjnano.5.174

Graphical Abstract
  • within only a few minutes in both cell types (Figure 5). These observations are supported by live cell imaging, which revealed that NP uptake is a very fast process, starting 5 to 10 minutes after exposure to the cells (Figures S2 and S3, Supporting Information File 1). Uptake of 1 µm particles was only
  • glass slide. The experiment was performed using a 63x/N.A 1.4 immersion oil lens. Cellular and morphological information was retrieved using Imaris software (Bitplane 7.4, Zürich, Switzerland). For live cell imaging, the cells were seeded in a Lab-TekTM II chambered coverglass 4 chamber well (1.5 german
  • phenol red pH indicator) was added with either 40 nm or 1 µm polystyrene particles alone or in combination with the inhibitor, and time lapse imaging was started. The live cell imaging ran over a time period of 60 minutes during which the cells were kept in a constant environmental at 37 °C and 5% CO2
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2014

Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

  • Adriano A. Torrano and
  • Christoph Bräuchle

Beilstein J. Nanotechnol. 2014, 5, 1616–1624, doi:10.3762/bjnano.5.173

Graphical Abstract
  • nanoparticles. The flow is generated by a novel microfluidic reactor that can be combined with live-cell imaging and is able to cover the entire physiological range of shear rates [31]. Comparison to other methods Customary techniques performed for achieving the dosage of particles taken up by cells include
  • for HeLa cells. However, after 10 or 24 h of interaction, the amount of particles taken up by HeLa cells strikingly exceeded the amount of silica particles taken up by HUVEC cells. Characterization of silica nanoparticles In order to allow for the investigation with live-cell imaging, silica
  • Technologies) and 1 µg·mL−1 hydrocortisone (Sigma-Aldrich). Cells were kept in a humidified 5% CO2 atmosphere at 37 °C. Uptake experiments For live-cell imaging experiments, cells were seeded 24 h before imaging in 8-well Nunc™ Lab-Tek™ II chamber slides (Thermo Fisher Scientific Inc., Germany) at a density of
PDF
Album
Full Research Paper
Published 23 Sep 2014

Nanolesions induced by heavy ions in human tissues: Experimental and theoretical studies

  • Marcus Bleicher,
  • Lucas Burigo,
  • Marco Durante,
  • Maren Herrlitz,
  • Michael Krämer,
  • Igor Mishustin,
  • Iris Müller,
  • Francesco Natale,
  • Igor Pshenichnov,
  • Stefan Schramm,
  • Gisela Taucher-Scholz and
  • Cathrin Wälzlein

Beilstein J. Nanotechnol. 2012, 3, 556–563, doi:10.3762/bjnano.3.64

Graphical Abstract
  • be linear. However, using a double-strand break (DSB)-specific marker (phosphorylated histone γH2AX), we found “bending” of the streaks when cells were fixed for 30 min or more after irradiation [8] (Figure 1). Reconstruction of the track dynamics by using live-cell imaging (Supporting Information
  • nanolesions in tissues. Further extensions of the MCHIT and TRAX code will be necessary to obtain a satisfactory description of energy deposition and track behavior at the nanometer scale in realistic targets. Experimental Detailed experimental methods for immunohistochemistry and live-cell imaging in our
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2012
Other Beilstein-Institut Open Science Activities